
Imperial College London

Department of Physics

Recent Developments in the Theory of

Partially Massless Gravity

Authored by

Ohoud Khader Alharbi

Supervised by

Claudia de Rham

Submitted in partial fulfillment of the requirements for the degree of

Masters of Science of Imperial College London

September 2023



Abstract

In the pursuit of finding a quantum field theory for gravity, theories of massive gravity

have regained interest. Massive gravity in de Sitter and Anti-de Sitter spaces gives rise

to a particularly promising avenue known as the theory of ‘Partially Massless Gravity’.

Despite the inconsistencies and challenges found in many non-linear formulations of

partially massless gravity, recent research indicates a potential breakthrough by consid-

ering non-unitary theories of multiple partially massless fields. This dissertation delves

into the construction of partially massless gravity and its most recent progress, a non-

unitary theory of multiple partially massless spin-2 fields, which we refer to as ‘Non-

unitary Multi-field Partially Massless Gravity’. We present the consistency of the theory

along with its implications and derive a simple test for the consistency of the theory for

two fields in the mini-superspace ansatz. We highlight that the field is still in its recent

stages, and numerous tests, enhancements, and discoveries are actively being made,

paving the way to find a consistent description of gravity in the realm of quantum

fields.
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Chapter 1

Introduction

Gravity — one of the four fundamental forces in nature — is responsible for govern-

ing the universe at large scales [1]. While gravity is the most noticeable force shaping

our daily life experiences, from a theoretical perspective, it remains one of the most

enigmatic topics, being the sole force not yet consistent with the principles of quantum

theories. To date, it is universally acknowledged that Einstein’s theory of General Re-

lativity [2] has remained at the forefront in describing gravity. Since its formulation

back in 1916, General Relativity has been serving as the primary model for describ-

ing gravitational interactions. Its alignment with observed phenomena has been noth-

ing but remarkable. Nevertheless, it does not provide any framework for the interface

between gravity and particle physics [3].

Besides mere theoretical interests, it is valuable to investigate other alternative the-

ories that describe gravitational fields in the framework of quantum field theories. Such

models might hold the key to unresolved mysteries in cosmology, issues that even Gen-

eral Relativity falls short of addressing, such as the old cosmological constant problem

and the phenomenon of late-time cosmic acceleration [4]. In the realm of quantum field
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theory, fields can be quantized in which their excitations appear as quanta with definite

energy and momenta, classified by their mass and spin. This leads to the intriguing

potential of finding an alternative theory capable of quantizing gravitational fields and

describing its quanta, often referred to as ‘Gravitons’ [5].

Initially, theoretical physicists agreed that the quantum aspects of gravity should

encode gravitons as massless spin-2 particles [6–10]. They also believed that gravitons

must be massless to maintain gauge invariance — a fundamental property ensuring

that physical laws remain consistent under gauge transformations [11]. However, as

highlighted by Schwinger [12], maintaining gauge invariance does not always imply

masslessness, meaning that masslessness of the graviton is not a necessity [13]. This

idea has led to a renewed interest in theories of massive gravity, where one maintains

the notion of spin-2 fields but considers the graviton to acquire a non-zero mass. The

notion of massive gravity has existed since the late 1930s with the formalism of Markus

Fierz and Wolfgang Pauli [14]. Their formalism suggests a linearized spin-2 field action

compatible with describing general relativity when deriving its equations of motion.

However, it has been shown that the linear Fierz-Pauli action suffers from continuity

issues, known as Van Dam-Veltman-Zakharov (vDVZ) discontinuity [15, 16]. This dis-

continuity becomes apparent by the difference within the theory when directly setting

the mass to zero as opposed to gradually approaching zero mass. Fortunately, the Vain-

shtein mechanism [17] offers a solution to this issue, which suggests the necessity of

non-linear extensions of massive gravity. Although most non-linear extensions give rise

to pathologies, particularly the Boulware-Deser (BD) ghost [18], a ghost-free realiza-

tion of massive gravity has been recently discovered, known as the dRGT theory [19].

This theory could re-sum non-linear terms of an effective field theory of massive grav-
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ity. Nowadays, dGRT theory is believed to avoid many inconsistencies that used to be

present in the previous constructions of massive gravity. Unfortunately, even with the

absence of the BD ghost, dRGT theory still suffers from other pathologies [20–24]. This

raises the question of whether one can provide a resolution of these pathologies by a

different construction of massive gravity [25].

Another way to modify the linearized Fierz-Pauli massive gravity is by investigating

the theory in maximally symmetric spaces [26]. An interesting result can be found in

de Sitter or Anti-de Sitter
(
(A)dS

)
spaces: for a specific value of the graviton’s mass rel-

ative to the (A)dS curvature, the theory reveals a new gauge symmetry. This symmetry

effectively eliminates the pathological terms in the theory, forcing it to propagate with

fewer degrees of freedom. This exceptional case of massive gravity has been referred to

as ‘Partially Massless Gravity’ [27–34]. The existence of the extra symmetry in the lin-

earized theory of partially massless gravity raises the question of whether this symmetry

and the fewer degrees of freedom could be extended to a fully non-linear theory. This

question is significant as we anticipate that a non-linear extension of partially massless

gravity may help avoid the pathologies that dRGT theory still faces [35]. Moreover, a

unique characteristic that sets PM gravity apart from other theories is its constraint on

the value of the cosmological constant. If there exists a non-linear extension to the the-

ory, then the gauge symmetry of the PM gravity could potentially tune the cosmological

constant so that the quantum contributions are canceled up to the small residual value

that we observe, offering a natural resolution to the old cosmological constant problem.

Hence, if one finds a consistent non-linear extension of partially massless gravity, the

non-linear PM gauge symmetry would eliminate the pathological terms at all orders,

naturally avoid discontinuities in the massless limit, tackle cosmological problems and
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capture Einstein’s theory as an effective field theory of gravity [36].

Many models of non-linear partially massless gravity have led to inconsistencies at

higher orders. This issue is usually referred to as a ‘no-go result’ [37, 38], as it was

thought to be unavoidable. Several works have tried to resolve the no-go results by

considering theories of multiple partially massless spin-2 fields [37, 39, 40]. In these

analyses, the focus has been on unitary theories, where the relative sign among the mul-

tiple field terms is positive. Yet, no success in navigating past the inconsistencies has

been reached. However, In 2020, the significant work of Boulanger, Deffayet, Garcia-

Saenz, and Traina [41] showed that relaxing the requirement of unitarity leads to a

complete and consistent theory of multiple partially massless fields. This intriguing

result brings attention to further investigations on the many unexplored aspects of non-

linear partially massless gravity.

This dissertation captures the recent development in the theory of partially mass-

less gravity. We start by setting the foundations and reviewing the theory of massive

gravity in Chapter 2. This should pave the way to present our main focus, partially

massless gravity. In Chapter 3, we highlight the first construction of linear partially

massless gravity, the method of testing candidates for non-linear extensions, and the

main obstructions shown with an example from a candidate theory. Next, we present in

Chapter 4 the recent development and the formulation of the revolutionary non-unitary

partially massless theory with multiple fields, stating by the unitary formulation, then

enforcing non-unitarity and presenting the principal outcomes from such property. Af-

terward, we present our test for the consistency of theory in a simple setup: two fields in

the mini-superspace ansatz (homogeneous and isotropic universe). Finally, in Chapter

5, we conclude with a summary and outlook for future developments in this theory.
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Notations and Conventions

Throughout this dissertation, we maintain the usage of natural units, where the reduced

Planck constant ℏ and the speed of light c are both set to unity. We also adopt the plus

signature convention (−,+,+, · · · ,+) for the metric tensors. Additionally, we refer to

the number of spacetime dimensions by D and the spacetime indices by Greek letters

µ, ν, ρ, · · · ∈ {0, 1, 2 · · · , D − 1}, while the spacial indices are denoted by Latin letters

i, j, k, · · · ∈ {1, 2, · · · , D − 1}. Hence the index µ = 0 represents the time-like direction

such that x0 = t. For a given tensor Aµν , we write the indices as (µ,ν) to denote

symmetrization. i.e., A(µν) =
1
2
(Aµν+Aνµ). Similarly, [µ,ν] denotes anti-symmetrization

such that A[µν] =
1
2
(Aµν − Aνµ). We also use the square brackets to express the trace

of the tensor with respect to the Minkowski metric ηµν = diag(−1,+1,+1,+1). i.e.,

[A] = Aµ
µ = ηµνAµν . For an arbitrary metric gµν other than Minkowski, we denote the

trace of the tensor using angle brackets ⟨A⟩ = Aµ
µ = gµνAµν , unless specified otherwise.
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Chapter 2

Review of Massive Gravity

2.1 Fierz-Pauli Action

2.1.1 Linear Fierz-Pauli

The first construction of a theory that suggests a non-zero mass for the graviton was

made by Markus Fierz and Wolfgang Pauli in 1939 [14]. The formulation of Fierz and

Pauli considers adding a graviton mass term for the kinetic Einstein-Hilbert action, in

which the theory returns to GR in the massless limit. Note that the linearized kinetic

term is uniquely fixed to maintain a local and Lorentz-invariant theory and to prevent

higher derivatives in the longitudinal (helicity-0) mode. The latter is needed because

higher than the first-order derivatives leads to an unbounded Hamiltonian. This is the

essence of the Ostrogradsky’s theorem [42, 43]. We denote these problematic higher

derivatives in the helicity-0 mode as ‘ghosts’ [44] and will always try to avoid them.

Moreover, a priori for the mass term is that it contains only two powers of the spin-2

field hµν and no derivatives. For an arbitrary number of spacetime dimensions d and a
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generic mass m, the Lagrangian of the Fierz-Pauli action is written as:

LFP = −MD−2
Pl

4
h̃µν Êαβ

µν h̃αβ −
MD−2

Pl

8
m2(h̃µν h̃

µν − h̃2) (2.1)

where MPl is Plank’s mass, and Ê is the Lichnerowicz operator

Êαβ
µν h̃αβ = −1

2

(
2h̃µν − 2∂(µ∂αh̃

α
ν) + ∂µ∂ν h̃− ηµν(2h̃− ∂α∂βh̃

αβ)
)
, (2.2)

with defining h̃µν = hµν/M
(D−2)/2
Pl , h̃ = ηµν h̃µν , and 2 = ηµν∂µ∂ν . We note that the

kinetic term is invariant under the gauge transformation

hµν → hµν + ∂(µξν), (2.3)

We will make use of this property in a later discussion.

Stückelberg Fields

The form of the mass term presented in (2.1) breaks diffeomorphism invariance. This

invariance can be restored by the introduction of the well-known Stückelberg trick, first

introduced by Stückelberg in 1938 [45, 46] in the context of electromagnetic theories.

In the Stückelberg approach, the key is to introduce d fields ϕa that transform under

linear diffeomorphism in a specific way to make the mass term invariant. For example,

when considering the theory in D = 4 dimensions and after including four linearized

Stückelberg fields, the resulting diffeomorphism invariant theory will be

LFP = −1

4
hµν Êαβ

µν hαβ −
1

8
m2
(
(hµν + 2∂(µϕν))

2 − (h+ 2∂αϕ
α)2
)

(2.4)
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which is invariant under the simultaneous gauge transformations

hµν → hµν + ∂(µξν)

ϕµ → ϕµ −
1

2
ξµ

(2.5)

Propagating degrees of freedom (DoFs)

We will identify the propagating DoF for the four-dimensional linear theory presented

in (2.4). For such, we split the Stückelberg field into a transverse mode Aa and a

longitudinal mode π,

ϕa =
1

m
Aa +

1

m2
ηab∂bπ (2.6)

Hence, the linearized Fierz-Pauli action, in terms of hµν and the Stückelberg fields Aµ

and π, is written as

LFP =− 1

4
hµν Êαβ

µν hαβ −
1

2
hµν(Πµν − [Π]ηµν)−

1

8
FµνF

µν

− 1

8
m2(hµνh

µν − h2)− 1

2
m(hµν − hηµν)∂(µAν)

(2.7)

where Fµν = ∂µAν − ∂νAµ , Πµν = ∂µ∂νπ , and [Π] = ηµνΠµν .

This form of the action allows us to identify the kinetic term of the different fields,

the mass terms, and the mixing terms. Nevertheless, one still misses the kinetic term of

the field π as it is hidden in the mixing with hµν . To extract the missing kinetic term, we

use the shifting h̄µν = hµν − πηµν . Hence, the linearized Fierz-Pauli action becomes

LFP =− 1

4
h̄µν Êαβ

µν h̄αβ −
3

4
(∂π)2 − 1

8
FµνF

µν

− 1

8
m2(h̄µν h̄

µν − h̄2) +
3

2
m2π2 +

3

4
m2πh̄

− 1

2
m(h̄µν − h̄ηµν)∂(µAν) + 3mπ∂αA

α

(2.8)
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This decomposition shows the different DoFs in the linearized massive gravity. One

finds that:

• hµν represents the helicity-2 mode and propagates two DoFs.

• Aµ represents the helicity-1 mode and propagates two DoFs.

• π represents the helicity-0 mode and propagates one DoFs.

Thus, the linearized Fierz-Pauli action propagates a total of five DoF, which is consistent

for a massive spin-2 field in four dimensions.

2.1.2 Van Dam-Veltman-Zakharov (vDVZ) Discontinuity

Even though the issue of the diffeomorphism invariance has been resolved by the Stück-

elberg approach, the linearized Fierz-Pauli action suffers from a critical discontinuity

issue, known as the Van Dam-Veltman-Zakharov (vDVZ) Discontinuity [15, 16], which

will lead us to conclude that the linear description is no longer appropriate for a theory

of massive gravity.

To demonstrate the vDVZ discontinuity, we will study the theory (2.1) with D = 4

and with the presence of external sources, expressed by their stress-energy tensors Tµν

and T ′
µν . Note that for the spin-2 field, the helicity-0 mode could couple to the external

source, exciting the two helicity-2 modes of the graviton and an additional helicity-0

mode. This excited helicity-0 mode could have dramatic consequences, which will be

seen when computing the gravitational exchange amplitude between the two sources

in the massive m ̸= 0 and massless m = 0 cases.
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Massive spin-2 field

Consider the linear four-dimensional Fierz-Pauli action by adding the response to a

conserved external source Tµν ,

L = −1

4
hµν Êαβ

µν hαβ −
1

8
m2
(
hµνh

µν − h2
)
+

1

2MPl

hµνT
µν (2.9)

One finds that the linearized Einstein equation is given by

Êαβ
µν hαβ +

1

2
m2
(
hµν − hηµν

)
=

1

MPl

Tµν (2.10)

To solve this equation for hµν , we consider its trace and divergence

h = − 2

3m2MPl

(
T +

2

m2
∂α∂βT

αβ

)
(2.11)

∂µh
µ
ν = − 2

3m2MPl

(
− ∂µT

µ
ν +

1

3
∂νT +

2

3m2
∂ν∂α∂βT

αβ

)
(2.12)

Plugging them back into the Einstein equation gives

(2−m2)hµν = − 2

MPl

(
Tµν −

1

3
Tηµν −

2

m2
∂(µ∂αT

α
ν) +

1

3m2
∂µ∂νT

+
1

3m2
∂α∂βT

αβηµν +
2

3m4
∂µ∂ν∂α∂βT

αβ

) (2.13)

which can be simplified to

(2−m2)hµν = − 2

MPl

(
η̃µ(αη̃νβ) −

1

3
η̃µν η̃αβ

)
Tαβ (2.14)

where η̃µν = ηµν − 1
m2∂µ∂ν . To avoid confusion, we note that the term η̃µ(αη̃νβ) is sym-

metrized over only two indices α and β.

10



Now the propagator for the massive spin-2 field can be written in terms of the polariz-

ation tensor fmassive
µναβ as

Gmassive
µναβ (x, x′) =

(η̃µ(αη̃νβ) − 1
3
η̃µν η̃αβ)

(2−m2)
=

fmassive
µναβ

(2−m2)
. (2.15)

hence the amplitude exchange between two sources Tµν and T ′
µν via the massive spin-2

field is given by

Amassive
TT ′ =

∫
d4xhµνT

′µν =

∫
d4xT ′µν fmassive

µναβ

(2−m2)
Tαβ. (2.16)

and when taking the massless limit m → 0, the exchange amplitude will become

Am→0
TT ′ = − 2

MPl

∫
d4xT ′µν 1

2

(
Tµν −

1

3
Tηµν

)
(2.17)

We will compare this result with the exchange amplitude derived from the massless

spin-2 field.

Massless spin-2 field

When considering a spin-2 field with m = 0, we will have

L = −1

4
hµν Êαβ

µν hαβ +
1

2MPl

hµνT
µν (2.18)

and the equation of motion of this Lagrangian will be simply

Êαβ
µν hαβ =

1

MPl

Tµν . (2.19)
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The massless theory has only the kinetic term, so we could use the invariance under the

transformation (2.3) and choose any gauge. For our convenience, we will use the de

Donder gauge

∂µh
µ
ν =

1

2
pν , (2.20)

which will reduce the Einstein equation to

2hµν = − 2

MPl

(
Tµν −

1

2
Tηµν

)
. (2.21)

Now, the massless propagator in terms of the massless polarization tensor is given by

Gmassless
µναβ (x, x′) =

(ηµ(αηνβ) − 1
2
ηµνηαβ)

2
=

fmassless
µναβ

2
. (2.22)

Finally, we get the expression of amplitude exchange between two sources Tµν and T ′
µν

via the massless spin-2 field

Amassless
TT ′ = − 2

MPl

∫
d4xT ′µν 1

2

(
Tµν −

1

2
Tηµν

)
, (2.23)

which differs from the result derived from the massless limit (2.17).

The unavoidable difference between (2.17) and (2.23) means that there is a discon-

tinuity between the purely massless propagator and the massless limit of the massive

propagator, which is the vDVZ discontinuity. The Vainshtein mechanism [17] has re-

solved this problem, but the resolution implies the necessity of considering the non-

linear interactions. Consequently, massive gravity must be a non-linear theory, and one

must promote the linear Fierz-Pauli action to a non-linear theory.
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2.1.3 Non-linear Fierz-Pauli

To construct a non-linear version of the Fierz-Pauli action, one must consider promoting

the theory to possess a full diffeomorphism invariance (or covariance). i.e., in order for

the spin-2 field to interact, the gauge symmetry is forced to include non-linear terms,

promoting diffeomorphism invariance to a non-linearly realized gauge symmetry

h → h+ ∂ξ +
1

MPl

∂(hξ) + · · · (2.24)

This gauge invariance will be automatically satisfied on-shell, order by order in h/MPl.

Starting from the kinetic term, satisfying this symmetry will uniquely promote it to

the well-known fully covariant Einstein–Hilbert term

Lspin−2
kin. covariant =

M2
Pl

2

√
−gR[g], (2.25)

where R is the Ricci scalar associated with a fluctuated metric gµν = ηµν + hµν/MPl.

Since the kinetic term is non-linear, we conclude that any interacting theory of a spin-2

field must be fully non-linear and possess non-linear diffeomorphism invariance (or co-

variance). Note that the local gauge symmetry will prevent the presence of any ghost

from the kinetic term, making it a consistent choice as a kinetic term for a theory of

massive gravity.

non-linear Stückelberg

Achieving full diffeomorphism invariance requires the theory to be built from scalar

objects constructed from the fluctuated metric gµν and other tensors. However, the

mass term is instead built out of the fluctuation hµν = MPl (gµν − ηµν), which does not
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transform as a tensor under diffeomorphism and hence breaks covariance. To restore

it, we will introduce a non-linear modification of the Stückelberg trick [47, 48], which

suggests introducing the Stückelberg trick by making the simultaneous replacements of

the reference metric of the theory fµν and the fluctuation hµν as

fµν
Replace−−−−→ f̃µν = ∂µϕ

a∂νϕ
bfab (2.26)

hµν = MPl (gµν − ηµν)
Replace−−−−→ Hµν = MPl

(
gµν − f̃µν

)
. (2.27)

where ϕa are the four Stückelberg fields.

We note that f̃µν will transform as a tensor under coordinate transformations as

long as the Stückelberg fields transform as scalars. In addition, the introduction of the

reference metric fµν allows us to construct a theory of massive gravity being a scalar

Lagrangian of the two tensors f̃µν and gµν .

Helicity decomposition

Applying the helicity decomposition on Hµν will give

Hµν = hµν + 2∂(µχν) −
1

MPl

ηab∂µχ
a∂νχ

b

= hµν +
2

m
∂(µAν) +

2

m2
Πµν

− 1

MPlm2
∂µA

α∂νAα − 2

MPlm3
∂µA

αΠνα − 1

MPlm4
Π2

µν

(2.28)

We can identify helicity-2 mode of the graviton in hµν , helicity-1 in Aµ, and helicity-0 in

π. These are the same propagating DoF in the linear theory.

14



Non-linear mass term

We can now promote the linear Fierz-Pauli mass term to a non-linear theory. A straight-

forward extension is constructed by using the tensor quantity

Xµ
ν = gµαf̃αν = ∂µϕa∂νϕ

bfab. (2.29)

Hence, the non-linear Fierz-Pauli mass term can be written in a manifestly diffeomorph-

ism invariant form

L(nl)
FP,mass = −m2M2

Pl

√
−g
([
(I− X)2

]
− [I− X]2

)
, (2.30)

where I denotes the identity matrix, and the square brackets denote the trace with re-

spect to Minkowski. Note that this formulation has been used in [49], along with other

alternative forms such as the one presented in [18]. This is the essence of the fact that

the Fierz-Pauli action can be generalized to a non-linear theory in an arbitrary number

of ways. Unfortunately, as we shall demonstrate next, most of these generalizations

generate a ghost known as the Bouldware-Deser (BD) Ghost.

2.1.4 Bouldware-Deser (BD) Ghost

The BD ghosts arising from (2.30) are observed by the appearance of an Ostrograd-

sky’s instability [42, 50]. For demonstration, we will take the reference metric to be

Minkowski fµν = ηµν and focus on the helicity-0 mode. With this setting, we first find

that the tensor quantity defined in (2.30) becomes

Xµ
ν = δµν − 2

MPlm2
Πµ

ν +
1

M2
Plm

4
Πµ

αΠ
α
ν . (2.31)
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where the indices are all raised and lowered with respect to ηµν . Plugging this expres-

sion in the non-linear Fierz-Pauli mass term gives

L(nl)
FP,mass ⊃− 4

m2

(
[Π2]− [Π]2

)
+

4

MPlm4

(
[Π3]− [Π][Π2]

)
− 1

M2
Plm

6

(
[Π4]− [Π2]2

)
.

(2.32)

We note that the quadratic term in (2.32) becomes a total derivative when integrating

by parts, which does not contribute to the equations of motion. However, this argument

does not apply to the higher-order interactions as they are genuine higher-order oper-

ators and will lead to equations of motion with cubic or higher derivatives. Thus, the

higher order operators
(
[Π3] − [Π][Π2]

)
and

(
[Π4] − [Π2]2

)
in the non-linear Fierz-Pauli

mass term will propagate an additional DoF that result in an Ostrogradsky’s instability.

Hence, the additional DoF will unavoidably give rise to a ghost, which is the BD ghost.

To avoid the BD ghosts, it has been considered in [18] to formulate the Fierz-Pauli

mass term as a functional, given by

LF,(nl)
FP = −m2

√
−gF

[
gµνgαβ (HµαHνβ −HµνHαβ)

]
. (2.33)

Alas, there does not exist a nonzero analytic choice of the function F that can overcome

the non-linear propagation of the BD ghost. Luckily, a different construction of the mass

term makes the absence of the BD ghost achievable, which we will highlight in the next

section.
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2.2 Ghost-Free Massive Gravity: dRGT Theory

2.2.1 Decoupling Limit

Here, we will briefly discuss the most well-known ghost-free massive gravity: the dRGT

theory, formulated by de Rham, Gabadadze, and Tolley [19, 51]. The dRGT formalism

was originally constructed in the decoupling limit of massive gravity, which aims to

detach the relevant interactions of the helicity-0 modes from the standard and well-

understood complications of General Relativity [52]. In ghost-free massive gravity, the

first irrelevant interactions arise at the scale Λ3 = (m3MPl)
1/3. Hence, Λ3 is used for the

decoupling scale. With that in mind, we proceed to define the canonically normalized

variables:

π̂ = Λ3
3π, Λ3

3 = m2MPl, ĥµν = MPlhµν , (2.34)

and the decoupling limit is then obtained by taking MPl → ∞ m → 0, and keeping π̂, ĥ,

Λ3 to be fixed.

2.2.2 General Formulation

The idea of this ghost-free model is to prevent the presence of the BD ghost in non-linear

theory by constructing the mass (or rather potential) term in a way where all the higher

derivative operators involving the helicity-0 mode are total derivatives, which will then

not contribute to the equations of motion, leading to a healthy non-linear theory of

massive gravity.

We start by defining the tensor Hµν to be the covariant form of the metric perturb-

ation gµν = ηµν + hµν = Hµν + ηab∂µϕ
a∂νϕ

b, where ηµν is Minkowski metric, hµν is the

spin-2 field, and ϕa are four Stückelberg fields transforming as scalars. We will also
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extract the helicity-0 mode of the graviton π by expressing ϕa = (xa − ηaµ∂µπ). Hence

we have

Hµν = hµν + 2Πµν − ηαβΠµαΠβν , (2.35)

where Πµν ≡ ∂µ∂νπ. We now introduce the tensor quantity

Kµ
ν (g,H) = δµν −

√
δµν −Hµ

ν = −
∞∑
n=1

dn (H
n)µν , dn =

(2n)!

(1− 2n)(n!)24n
, (2.36)

where in this expression, Hµ
ν = gµαHαν , and (Hn)µν = Hµ

α1
Hα1

α2
· · ·Hαn−1

ν . Moreover,

we will use the notion of the square brackets [. . .] to denote the trace with respect

to Minkowski metric, e.g., [Π] = ηµνΠµν and [Π2] = ηµνηαβΠµαΠνβ, along with the

angle brackets ⟨. . .⟩ to denote the trace with respect to the physical metric gµν , e.g.

⟨Π⟩ = gµνΠµν and ⟨Π2⟩ = gµνgαβΠµαΠνβ.

Recall that we found from the non-linear Fierz-Pauli mass term that the combina-

tion [Π]2 − [Π2] turns out to be a total derivative. Hence, one could make use of this

ghost-free combination and extend it by replacing [Π]2 and [Π2] into ⟨K⟩ and ⟨K2⟩, re-

spectively. The total Lagrangian then reads

L =
M2

Pl

2

√
−g

(
R− m2

4
U(g,H)

)
, (2.37)
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with the potential U expressed as

U(g,H) = −4
(
⟨K⟩2 −

〈
K2
〉)

= −4
(∑

n≥1

dn⟨Hn⟩
)2 − 8

∑
n≥2

dn ⟨Hn⟩

=
(〈
H2
〉
− ⟨H⟩2

)
− 1

2

(
⟨H⟩

〈
H2
〉
−
〈
H3
〉)

− 1

16

(〈
H2
〉2

+ 4⟨H⟩
〈
H3
〉
− 5

〈
H4
〉)

− 1

32

(
2
〈
H2
〉 〈

H3
〉
+ 5⟨H⟩

〈
H4
〉
− 7

〈
H5
〉)

+ · · ·

(2.38)

We can rewrite the potential in a better notion in which any ghost-free theory of massive

gravity in the decoupling limit can adapt

U(g,H) = −4
∑
n≥2

αnL(n)
der (K) (2.39)

where the expression

L(n)
der(K) = −

n∑
m=1

(−1)m
(n− 1)!

(n−m)!
⟨Km⟩L(n−m)

der (K) (2.40)

represent the total derivative contributions. As demonstrated in [51], the contributions

vanish beyond the quartic order. i.e. L(n)
der(K) = 0 for any n ≥ 5, and the decoupling

limit therefore stops at that order. Hence, we can set the upper limit of the sum to be

n = 4. The Lagrangian of the dRGT theory then reads

LdRGT =
M2

Pl

2

√
−g

(
R +m2

(
L(2)

der(K) + α3L(3)
der(K) + α4L(4)

der(K
))

(2.41)
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Alternatively, one can write the dRGT theory with a more compact form and with

two dynamical metrics gµν and fµν , given by the action

SdRGT =
M2

Pl

2

∫
d4x

√
−g

(
R +

m2

2

4∑
n=0

αnLn[K[g, f ]]

)
(2.42)

where the tensor Kµ
ν [g, f ] given by

Kµ
ν [g, f ] = δµν −

(√
g−1f

)µ
ν (2.43)

and the overall potential U written as

U = −M2
Pl

4

√
−g

4∑
n=0

αnLn[K[g, f ]] (2.44)

with the Lagrangians Ln defined as

L0[Q] = εµναβεµναβ

L1[Q] = εµναβεµ′ναβQ
µ′

µ

L2[Q] = εµναβεµ′ν′αβQ
µ′

ν Q
ν′

ν

L3[Q] = εµναβεµ′ν′α′βQ
µ′

ν Q
ν′

ν Q
α′

α

L4[Q] = εµναβεµ′ν′α′β′Qµ′

ν Q
ν′

ν Q
α′

α Qβ′

β

(2.45)

The theory has proven to be indeed absent of BD ghosts. We will leave the further

details for the reader to examine; see [4, 19, 53].
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2.2.3 Absence of Cosmological Solutions

Regardless of the absence of ghosts, a significant obstruction of dRGT theory becomes

evident when trying to construct useful solutions in the context of cosmology, that is,

the Friedmann–Robertson–Walker (FRW) ansatz, which describes a homogeneous and

isotropic universe. The formalism of the dRGT theory indeed eliminates the BD ghost

in massive gravity. However, it will also prohibit the existence of homogeneous and

isotropic cosmological solutions, which was demonstrated by the authors in [54]. We

will present their proof by first setting the metric gµν to the FRW ansatz:

gµν = −N(t)2dt2 + a(t)2dx2, (2.46)

where a(t) is the dynamical scale factor, and N(t) is the lapse function. In addition,

homogeneity and isotropy force the time and space components of the Stückelberg fields

to become

ϕ0 = f(t), ϕi = xi. (2.47)

For the sake of simplicity, we will narrow our focus to three spatial dimensions, as it

should be sufficient to show the absence of FRW solutions. Plugging these expressions

into (2.41) and setting α3 = α4 = 0, one obtains the following Lagrangian

L = 3M2
Pl

(
− aȧ2 −m2|ḟ |

(
a3 − a2

)
+m2

(
2a3 − 3a2 + a

))
(2.48)

where the dot denotes the time derivative. By taking variation with respect to f , we

find

m2∂t
(
a3 − a2

)
= 0 (2.49)
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This particular constraint presents a significant limitation, effectively making the evol-

ution of the scale factor a impossible. Even if we did set α3 and α4 to be non-zero, the

only change we find is the polynomial function (a3 − a2), which will still be acted on by

∂t, hence preventing the time evolution of the scale factor. This outcome is unavoidable,

meaning that any alternative setting within the dRGT framework would converge to the

same result. Therefore, there exist no significant homogeneous and isotropic solutions

for the theory (2.41). This finding underlines a notable limitation of the theoretical

framework in question, which points towards the necessity of exploring refinements,

enhancements, or potential alternative approaches for a consistent theory of gravity.

2.3 Massive Gravity on de Sitter Space

2.3.1 Fierz-Pauli on de Sitter

Up to this point, our discussion of massive gravity has revolved within the context of the

Minkowski background. Transitioning forward, We now demonstrate the construction

of massive gravity on de sitter (dS) spacetime. This discussion holds significant import-

ance since the first construction of partially massless gravity is derived from massive

gravity on the dS background.

We will start our discussion with the linear Fierz-Pauli formalism of massive grav-

ity on four-dimensional dS spacetime. Consider the Fierz-Pauli action (2.1) expanded

around dS, such that gµν = γµν + h̃µν = γµν + hµν/MPl, where γµν is the dS reference

metric. Hence, the linearized Fierz-Pauli action around dS reads

LFP,dS = −1

4
hµν(ÊdS)αβµν hαβ −

m2

8
γµνγαβ (HµαHνβ −HµνHαβ) (2.50)
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where Hµν is the tensor fluctuation defined in (2.27) with setting fµν = γµν , and ÊdS is

the Lichnerowicz operator on de Sitter, given by

(ÊdS)αβµν hαβ = −1

2

[
2hµν − 2∇(µ∇αh

α
ν) +∇µ∇νh− γµν

(
2h−∇α∇βh

αβ
)

+ 6H2
0

(
hµν −

1

2
hγµν

)] (2.51)

Where H0 here is the Hubble parameter, and all the covariant derivatives are with re-

spect to the dS metric, and the indices are raised and lowered with respect to the same

metric.

If we consider the helicity decomposition on Hµν , we find

Hµν = hµν + 2
∇(µAν)

m
+ 2

Πµν

m2

− 1

MPl

[
∇µAα

m
+

Πµα

m2

] [
∇νAβ

m
+

Πνβ

m2

]
γαβ,

(2.52)

with Πµν = ∇µ∇νπ. So, at the linearized level and by neglecting the vector fields, we

see that the helicity-0 and -2 modes in the Lagrangian behave as

LFP,dS =− 1

4
hµν
(
ÊdS
)αβ
µν

hαβ −
m2

8

(
h2
µν − h2

)
− 1

8
F 2
µν

− 1

2
hµν (Πµν − [Π]γµν)−

1

2m2

(
[Π2]− [Π]2

)
.

(2.53)

After integration by parts, we can diagonalize the helicity-2 and -0 modes are by setting

hµν = h̄µν + πγµν , which then gives

LFP,dS =− 1

4
h̄µν
(
ÊdS
)αβ
µν
h̄αβ −

m2

8

(
h̄2
µν − h̄2

)
− 1

8
F 2
µν

− 3

4

(
1− 2

(
H2

0

m2

))(
(∂π)2 −m2h̄π − 2m2π2

)
.

(2.54)
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We note that the helicity-0 mode terms now differ from the one on Minkowski (2.8) by

a factor
(
1− 2(H2

0/m
2)
)
.

2.3.2 The Higuchi Bound

By closely inspecting the linearized Fierz-Pauli action on dS as presented in (2.54), we

would be able to detect cases where ghosts and tachyons are avoided, but only under

specific constraints on the graviton mass m. This is the well-known Higuchi bound [28].

To elaborate further, on dS there exists a defined range of the graviton mass that is not

permitted. For instance, in 0 < m2 < 2H2
0 or m2 < 0, the theory always excites at least

one ghost (distinct from the BD ghost) that corresponds to a sixth degree of freedom.

On the other hand, when m2 > 2H2
0 , we obtain a healthy theory of massive gravity

of four-dimensional dS, which propagates five DoF. While if we consider m2 = 0, the

theory gracefully reduces to GR. Moreover, for the case when 0 < m2 < 2H2
0 , helicity-0

mode propagates a ghost. Also, in the scenario of m2 < 0, the ghost propagates from

the helicity-1 mode, and the helicity-2 and -0 modes are tachyonic. Finally and most

importantly, the case where the graviton mass lies on the bound m2 = 2H2
0 . In this

unique case, the helicity-0 mode loses its kinetic and mass term and hence disappears,

resulting in a theory that propagates in only four DoF. This corresponds to the theory of

Partially massless gravity [30–32].
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Extending these results to an arbitrary number of dimensions, the discussion of the

Higuchi bound is then summarized in the following key highlights:

• m2 = 0: General Relativity, with 2 DoF in 4d-spacetime.

• m2 > (d− 2)H2
0 : Massive gravity on dS, with 5 DoF in 4d-spacetime

• m2 < 0: Ghostly Helicity-1 modes and tachyonic helicity-2 and -0 modes.

• m2 = (d− 2)H2
0 : Partially massless gravity, with 4 DoF in 4d-spacetime.

We may now delve deeper and pay more attention to partially massless gravity, starting

from the next chapter onward.
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Chapter 3

Partially Massless (PM) Gravity

3.1 PM Gravity in Fierz-Pauli

As a simple definition, PM gravity is a theory of massive gravity in dS space with a

relation between the graviton mass m and the cosmological constant Λ (or equivalently

H0)

m2 =
2Λ

(D − 1)
, Λ =

(D − 1)(D − 2)

2
H2

0 (3.1)

PM gravity was first proposed in 2001 by Deser and Waldron [30–32] to avoid the

issues coming from the linear Fierz-Pauli action in Minkowski background (2.1.2). We

have demonstrated the existence of PM gravity from linearized Fierz-Pauli on the dS

background in section (2.3). In that linearized PM gravity, by substituting (3.1) in

(2.54), the resulting action would be

LPM
FP,dS = −1

4
h̄µν
(
ÊdS
)αβ
µν

h̄αβ −
m2

8

(
h̄2
µν − h̄2

)
− 1

8
F 2
µν , (3.2)
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where the condition of the mass eliminates the helicity-0 mode. One would also find a

new scalar gauge symmetry [27]

hµν → hµν + δhµν = hµν +

(
∇µ∇ν +

m2

D − 2
γµν

)
α, (3.3)

with α as a scalar gauge parameter. This result is generalizable to Anti-de Sitter (AdS)

[29, 32, 34, 52, 55]. We also highlight that the condition of PM gravity (3.1) forbids

the existence of a bare cosmological constant. This raises the interest in investigating

the capability of PM gravity to solve the old cosmological constant problem [56, 57].

Indeed, a linear theory is insufficient, and we still need to look for a non-linear extension

of PM gravity.

If one analyzes the non-linear Fierz-Pauli mass term presented in section (2.1.3) in

dS space, the helicity-0 mode will reappear and be infinitely strongly coupled with the

helicity-1 mode. This is inconsistent with the number of DoFs of the linear theory and

is thus a sick theory [4]. Consequently, one would look for an alternative non-linear

PM gravity theory with a gauge symmetry like the linear theory at all orders without

propagating any ghosts [36].

3.2 Looking for Non-linear PM Gravity

3.2.1 Motivation

The desire to achieve a consistent non-linear completion of PM gravity emerges from

its potential theoretical refinement and profound implications for understanding cos-

mological phenomena. One primary motivation is the suggestive resolution of the old
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cosmological constant problem [56, 57]. To elaborate further, the cosmological con-

stant Λ is a parameter viewed as the curvature of empty spacetime. As highlighted by

Zel’dovich in 1968 [58], we can express the energy-momentum tensor of the vacuum

as

T µν
vac = − Λ

8πG
gµν , (3.4)

where G is Newton’s gravitational constant. Note that the equation (3.4) gives us an

interpretation that the cosmological constant corresponds to the vacuum energy dens-

ity ρvac; thus, we can calculate a theoretical value for ρvac and then compare it with

observations. Now, assuming the accuracy of quantum field theory up to the Planck

scale, then the scale of 1019 GeV would serve as an ultraviolet cutoff in all field theory

processes, such that the energy density can be calculated by

⟨ρ⟩ =
∫ 1019GeV

0

d3k

2(2π)3

√
k2 +m2. (3.5)

This established cutoff results in a vacuum energy density ρvac ≈ 1076 GeV. Comparing

to the currently observed value (ρvac ≈ 10−47 GeV), this is a disaster. It means that if

ρvac was expressed in Planck units, then we need to fine-tune the cosmological constant

Λ to around 120 decimal places in order to match the observed result. Even using the

lowest possible cutoff, such as the quantum chromodynamics scale (∼ 200 MeV), would

still give a mismatch of around 40 orders of magnitude [59]. Hence, we must approach

this problem from a different theory, and non-linear PM gravity is a promising candid-

ate. This is because the presence of the PM gauge symmetry (provided there are no

anomalies) guarantees that the quantum corrections must maintain the relation (3.1),

and the old cosmological constant problem could be tackled in a more manageable way

28



by the PM gauge symmetry [36].

Another motivation to seek a non-linear completion of PM gravity comes from the

properties of the linearized theory that could be extended non-linearly. For instance,

there would be no vDVZ discontinuity, so the theory would not face any of the issues

presented in section (2.1.2) in the limit m → 0, provided that we maintain the PM rela-

tion (3.1), and thus there is no need for the Vainshtein mechanism presented in section

(2.1.3). This would allow us to avoid the complexities of the strong coupling effects

[4, 36]. In addition, ghost-free theories of massive gravity have a hidden strong inter-

action scale at low energies, which makes their consistency in the high-energy regime

problematic [20–22]. Moreover, The cosmological solutions of dRGT theory (2.42) are

generically unstable [23, 24], and have no cosmological solutions in the FRW regime,

which was demonstrated previously in section (2.2.3), meaning that we still need to

seek an alternative theory that possesses consistent and stable cosmological solutions.

Hence, a consistent non-linear theory of PM gravity has important theoretical and phys-

ical implications [25].

3.2.2 General Approach

To search for a consistent theory of non-linear PM gravity, the initial step would be to

consider the most general form of the action

S =

∫
ddxL =

∫
ddx(LEH + LPM), (3.6)

where LEH is the Einstein-Hilbert kinetic term

LEH =
M

(D−2)
Pl

2

√
−g(R[g]− 2Λ), (3.7)
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and LPM is the PM Lagrangian of the theory that requires to be diffeomorphism invari-

ant. In addition, the full action (3.6) must be invariant under the non-linear extension

of the PM gauge symmetry

δαS = 0 (3.8)

where δα is the non-linearly deformed PM gauge transformation extended from (3.3).

Both the action S and the transformation δα can be expanded in orders of the field hµν

δα = δ(0)α + δ(1)α + δ(2)α + · · ·

S = S(0) + S(1) + S(2) + · · ·
(3.9)

The aim is to formulate LPM together with a consistent deformed PM gauge transform-

ation δα so that if a PM theory of gravity exists, it must be formulated in a way that the

non-linear action respects the gauge invariance (3.8) at all orders [41].

3.2.3 Candidate from dRGT Theory

One approach to look for PM gravity is by taking a ghost-free theory of massive gravity

and then modifying it into PM gravity. To check if the resulting theory consistently

describes PM gravity, one can focus on the resulting gauge symmetry, and the consistent

theory should be able to extend the linear PM gauge symmetry (3.3) to the interacting

level [37]. The recent developments in ghost-free massive gravity theories allow us to

test them in the partially massless case. For example, the dRGT theory presented in

section (2.2) has been considered a candidate for non-linear PM gravity [36], and its
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non-linear PM action was formulated as

LPM =
MD−2

Pl

2

√
−g

(
R[g]− 2Λ− m2

4

d∑
n=0

βnSn

(√
g−1ḡ

))
(3.10)

where gµν is the dynamical metric, ḡµν is the reference dS metric, and S(M)n are the

symmetric polynomials of a matrix Mµ
ν , given by

Sn(M) = M [µ1
µ1

· · ·M µn]
µn

, (3.11)

with S0 ≡ 1. Note that when setting the PM condition (3.1) in the Lagrangian, a unique

choice of the constants β

β0 = −4(D − 1), β2 =
8

D − 2
, βn̸=0,2 = 0 (3.12)

eliminates the helicity-0 mode in the decoupling limit, making the theory a candidate

for non-linear PM gravity [52]. The Lagrangian (3.10) becomes

LPM =
MD−2

Pl

2

√
−g
(
R[g]− 2H2

0S2

(√
g−1ḡ

))
(3.13)

3.2.4 Non-linear Gauge Symmetry in Mini-superspace

Indeed, it is challenging to test the non-linear PM candidate for an arbitrary metric.

However, the analysis in [36] simplifies the approach by choosing a particular ansatz for

the dynamic metric and verifying the presence of PM symmetry. Thus, we can introduce

the theory in a simplified case of mini-superspace that is also useful in the context

of cosmology i.e., the Friedmann–Robertson–Walker (FRW) ansatz: homogeneous and
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isotropic universe [60–63].

We start from the Lagrangian (3.13) and replace H2
0 with an arbitrary coefficient

λ. This replacement will help us later to investigate the case λ → H2
0 . We enforce the

flat FRW ansatz in the flat slicing for the reference dS metric. The two metric tensors

gµν and ḡµν are now given by

gµν =

−N2(t) 0

0 a2(t)δij

 ḡµν =

−1 0

0 e2H0tδij

 (3.14)

where a(t) is the dynamical scale factor, and N(t) is the lapse function. Plugging all of

this in (3.13), and with the mini-superspace ansatz, the action — up to a total derivative

— reads

S =
MD−2

Pl

2

∫
dt

[
− (D − 1)(D − 2)

N
(aD−3ȧ2)

− 2λ(D − 1)aD−3eH0t

(
a+

D − 2

2
NeH0t

)]
.

(3.15)

We can remove N(t) using its equation of motion. i.e., substituting

N =
1√
λ
e−H0tȧ (3.16)

and up to a total derivative, the action will become

S = MD−2
Pl

∫
ddx

[
(D − 1)

√
λeH0taD−2(H0 −

√
λ)
]
. (3.17)

Note that for λ ̸= H2
0 , the equations of motion for a indicate that a = 0, and the action

will be inconsistent. This is a result of the fact that dRGT theory does not have consistent

FRW solutions [54]. Nevertheless, for the special case λ = H2
0 , the Lagrangian in

(3.17) becomes empty. Meaning that the theory possesses a gauge symmetry with gauge
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parameter ϵ(t) that allows us to determine the value of the scale factor arbitrarily

δa = ϵ, δN =
1

H0

e−H0tϵ̇, (3.18)

implying that any arbitrary function is a solution for the scale factor, with the lapse

function determined by (3.16). Thus, the transformation (3.18) should be the full non-

linear PM gauge symmetry in the mini-superspace form. The action (3.16) also implies

that the PM Lagrangian is invariant under the metric transformation that is first order

in derivatives

δgµν = diag

(
−2N

1

H0

e−H0tϵ̇, 2aϵ, · · ·
)
. (3.19)

By performing the change of variables

ϵ =
1

2
eH0t

(
−H0α̇ +H2

0α
)

(3.20)

The transformation (3.19) can be written as

δgµν =

(
∇̄µ∇̄ν +

m2

D − 2
ḡµν

)
α, (3.21)

where ∇̄µ is the covariant derivative with respect to ḡµν . Remarkably, this transforma-

tion is consistent with the linear PM gauge symmetry (3.3). This is a shred of evidence

that supports the theory (3.10) to be considered as a theory of non-linear PM gravity.

But we still need to test the theory further.
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3.2.5 Obstructions

The authors in [36] applied a systematic analysis of the candidate away from the de-

coupling limit and for an arbitrary dynamical metric gµν . This should determine whether

the theory can be considered a non-linear completion of PM gravity. The investigation

starts by expanding the Lagrangian (3.10) in orders of h

L = LEH + Lm

=
MD−2

Pl

2

[√
−g(R[g]− 2Λ)− m2

4

√
−ḡ
(
L(2)

m + L(3)
m + L(4)

m + · · ·
)]

,

(3.22)

with

L(2)
m = b1

〈
h2
〉
+ b2 ⟨h⟩2 ,

L(3)
m = c1

〈
h3
〉
+ c2

〈
h2
〉
⟨h⟩+ c3 ⟨h⟩3 ,

L(4)
m = d1

〈
h4
〉
+ d2

〈
h3
〉
⟨h⟩+ d3

〈
h2
〉2

+ d4
〈
h2
〉
⟨h⟩2 + d5 ⟨h⟩4 ,

· · ·

(3.23)

where hµν = gµν − ḡµν and the indices raised and lowered with respect to the dS metric

ḡµν . i.e., ⟨h⟩ = ḡµνhµν . Note that we have applied the interchange gµν ↔ ḡµν on the

mass term in (3.10) as the Lagrangian enjoys a Z2 symmetry under the interchange

of gµν ↔ ḡµν [64]. Now, if a PM theory of gravity exists, it must have a scalar gauge

symmetry and be invariant under a transformation

δhµν = L̂µνα, (3.24)

where α is the gauge parameter and L is some operator that can be expanded in powers

of h,

L̂ = L̂(0) + L̂(1) + L̂(2) + · · · (3.25)
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The gauge invariance will give us the Bianchi identity

L̂µν
δL
δhµν

= L̂µν

[
−1

2

√
−g (Gµν + Λgµν) +

δLm

δhµν

]
= 0. (3.26)

The idea is to solve order-by-order and set the right coefficients of the mass term and

for the operator L̂ to satisfy the identity. This is a brute force calculation, which has

been done by [36]. We summarize the results by the following:

• At quadratic order, the gauge invariance requirement (3.26) reads

L̂(0)
µν

[
− 1

2

√
−g (Gµν + Λgµν)

∣∣∣∣
(1)

+
δL(2)

m

δhµν

]
= 0. (3.27)

where L(2)
m is given by (3.23) and the subscript |(n) indicates the expansion to nth in hµν .

We consider the most general form of L̂(0) (up to two derivatives) is

L̂(0)
µνα = B1∇̄µ∇̄να +B2ḡµνα +B3ḡµν□̄α, (3.28)

with Bi are constants determined to satisfy (3.27). By choosing the coefficients for both

L(2)
m and L̂(0) as

b1 = −b2 =
2Λ

D − 1
, B2 =

2Λ

(D − 1)(D − 2)
B1, B3 = 0, (3.29)

the theory succeeds in being consistent at the quadratic order of hµν . One also finds

that the transformation law at the lowest order becomes

δ(0)hµν = ∇̄µ∇̄να +
2Λ

(D − 1)(D − 2)
ḡµνα, (3.30)
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which is the same transformation law found from linear Fierz-Pauli in dS (3.3) with

m2 = 2Λ/(D − 1).

• For the cubic order, gauge invariance statement (3.26) becomes

L̂(0)
µν

[
− 1

2

√
−g (Gµν + Λgµν)

∣∣∣∣
(2)

+
δL(3)

m

δhµν

]

+L̂(1)
µν

[
− 1

2

√
−g (Gµν + Λgµν)

∣∣∣∣
(1)

+
δL(2)

m

δhµν

]
= 0.

(3.31)

We have already found the right form of L̂(0) (3.28) and its coefficients (3.29). Here,

we need to work out L̂(1). The most general form of L̂(1) (also up to two derivatives)

has 18 terms

L̂(1)
µνα = C1hµν□̄α + C2h(µ

λ∇̄ν)∇̄λα + C3h∇̄µ∇̄να

+ · · ·+ C17hµνα + C18ḡµνhα,

(3.32)

where hµν is raised and lowered with respect to ḡµν Plugging this expression in (3.31)

would fix some of the coefficients but not all. We find that the gauge invariance would

be satisfied, and the right coefficients would work only when D = 4. This agrees with

the result found in [65, 66], which states that conformally invariant theories of non-

linear PM gravity can only exist in four dimensions. We Also find that the transformation

law in that order reads

δ(1)hµν =
1

2
h(µ

λ∇̄ν)∇̄λα− 1

2
∇̄(µhν)λ∇̄λα

+
1

2
∇̄λhµν∇̄λα− Λ

2

D − 6

(D − 1)(D − 2)
hµνα

(3.33)
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• In the quartic order, the gauge invariance requirement (3.26) becomes

L̂(0)
µν

[
− 1

2

√
−g(Gµν + Λgµν)

∣∣∣∣
(3)

+
δL(4)

m

δhµν

]
+ L̂(1)

µν

[
− 1

2

√
−g(Gµν + Λgµν)

∣∣∣∣
(2)

+
δL(3)

m

δhµν

]
+ L̂(2)

µν

[
− 1

2

√
−g (Gµν + Λgµν)

∣∣∣∣
(1)

+
δL(2)

m

δhµν

]
= 0,

(3.34)

where the most general form of L̂(2) has 72 terms. Unfortunately, with all possible

choices of these coefficients and even with D = 4, it is impossible to satisfy the gauge

invariance at this level. Hence, the candidate fails the test.

Various theories have been tested as candidates for non-linear PM gravity. But they

also fail to realize a non-linear PM gauge symmetry [65, 67–69]. Thus, a consistent

theory of non-linear PM gravity is yet to be found.
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Chapter 4

Non-unitary Multi-field PM Gravity

4.1 Indications of a Consistent Theory

The consecutive fails in finding a consistent non-linear theory of PM gravity emphasize

the necessity of considering different approaches. One method suggests that the higher-

order inconsistencies could be avoided by considering theories with multiple PM spin-2

fields. Prior literature, specifically [37, 65], considered using models with unitary in-

teracting PM fields, where the theory is described as ‘unitary’ when there are positive

signs between the kinetic terms of fields, ensuring the conservation of total probability

in processes [70]. Yet, even when introducing multiple spin-2 fields, we run into no-go

results. Nevertheless, the authors in [37] highlighted an exception: the case of ‘non-

unitarity’, where kinetic terms possess a relatively negative sign. This scenario brings

us into the realm of Conformal Gravity, which is known to be a non-unitary theory due

to the wrong relative sign between the Einstein-Hilbert kinetic term and the PM term.

Conformal gravity has proven to provide a natural arena for studying the PM spin-2

field when expanded on dS backgrounds [71, 72], making non-unitarity a considerable
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approach. The authors in [38] also found that the consistency of the gauge symmetry

is not possible unless we give up unitarity. One would now think: is it plausible to relax

the condition of unitarity in our theories? Lee and Wick’s work [73] provides an affirm-

ation, illustrating that non-unitary theories can still lead to a unitary scattering matrix,

hence preserving probability amplitudes and avoiding pathologies. This perspective has

gained more support in later studies [74–76]. Nowadays, we believe that non-unitarity

is not necessarily a pathology. Thus, relaxing the condition of unitarity might pave the

way to a consistent non-linear theory of PM gravity that can generalize the PM gauge

symmetry non-linearly.

4.2 Candidate Theory

4.2.1 Formalism

In a groundbreaking development, Boulanger, Deffayet, Garcia-Saenz, and Traina have

recently constructed a non-unitary Yang-Mills-like theory of multiple PM spin-2 fields

[41]. We will refer to their work as ‘Non-unitary multi-field PM gravity’. To clarify the

construction of this theory, We will first present the formalism of the unitary version

of the theory. Next, we relax the unitary condition, and finally, we display a proof of

consistency for the non-unitary theory.

Yang-Mills-like spin-2 theory

The foundations of the promising candidate trace back to the formalism of the unit-

ary Partially Massless Spin-2 Yang–Mills [40]. The motivation behind this method

lies within the similarities observed between the linearized PM theory (3.2) and Elec-
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trodynamics (EM), such as their propagation at the speed of light (often called null

propagation) [32], exhibiting scalar gauge symmetry, duality invariance [77, 78], mono-

pole solutions [79], and most importantly, the difficulties in constructing self-interactions,

where one cannot find non-trivial multi-point interaction terms without manifestly break-

ing the gauge invariance [80]. Notably, the issue in EM has been resolved by Yang-Mills

theory [81] with having multiple photon fields Aa with the index a = 1, 2, · · · , N raised

and lowered by the Kronecker-delta δab. The Lagrangian of the theory is

LYM =− 1

4
(∂µAνa − ∂νAµa) (∂

µAνa − ∂νAµa)

− gfabc∂µA
a
νA

µbAνc − g2

4
fabcf

a
deA

b
µA

c
νA

µdAνe,

(4.1)

where g is the coupling constant and fabc is the structure constant. This construction

deforms the abelian gauge symmetry to a non-abelian gauge symmetry. The transform-

ation of the photon field is then

δAa
µ = ∂µα

a + fbc
aAb

µα
c. (4.2)

Note that for the Lagrangian (4.1) to be consistent with this gauge symmetry, it re-

quires the structure constant to be fully antisymmetric and to satisfy the Jacobi identity

fac
dfbe

c + fbc
dfea

c + fec
dfab

c = 0. We also note that Yang-Mills theory could be construc-

ted by defining a non-abelian version of the field strength tensor F a
µν , which contains

quadratic powers of the field

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fbc

aAb
µA

c
ν , (4.3)
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and transforms covariantly under the gauge symmetry

δF a
µν = fa

bcα
bF c

µν , (4.4)

where α is the scalar gauge parameter.

With the formalism above, we may construct a unitary Yang-Mills-like theory for

multiple PM fields. Starting by defining the gauge invariant PM field strength tensor

Fµν [82]

Fµνρ = ∇µhνρ −∇νhµρ, (4.5)

and promoting it to a non-abelian version for multiple fields

F a
µνρ = ∇µh

a
νρ −∇νh

a
µρ +O

(
h2
)
, (4.6)

where O (h2) are higher order terms of h, whose exact forms remain to be specified.

Now, the non-linear action for multiple PM spin-2 fields is considered to be

S = −1

4

∫
dDx

√
−g
(
F λµν
a F a

λµν − 2F λµ
a µF

a
λν

ν
)
. (4.7)

with the greek indices, µ, ν... are raised and lowered by the dS metric gµν The idea is to

find a non-abelian PM gauge symmetry that is consistent with the theory at all orders.

Unfortunately, even by trying all possible combinations of higher-order terms in (4.6),

such symmetry could not be found (see [40] for details). Hence, the Yang-Mills-like the-

ory was considered a no-go. Nevertheless, the results differ after relaxing the condition

of unitarity, as we shall see next.
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Enforcing non-unitarity

The work of [41] starts by writing the action (4.7) with a tensor kab: a diagonal N by

N matrix with entries +1 and -1. This would be enough to enforce non-unitarity on the

Lagrangian terms. The undeformed action for a collection of N PM fields is then

S0 = −1

4

∫
dDx

√
−gkab

[
F aµνρF b

µνρ − 2F aµF b
µ

]
, (4.8)

where

F a
µνρ = ∇µh

a
νρ −∇νh

a
µρ, F a

µ = gνρF a
µνρ. (4.9)

Noticing that the unitary theory (4.7) had kab = δab, although we see that this choice

leads to a no-go. The objective of this analysis is to extend the action with nontrivial

interactions while preserving the gauge symmetry. This requires using the general ap-

proach presented in section (3.2.1). Schematically, we modify the linear PM gauge

transformation with field-dependent terms, such that

δα = δ(0)α + δ(1)α + δ(2)α + · · · , (4.10)

where (n) denotes the order in a gauge parameter ϵ, and δ
(0)
α is required to be kept as

the linear PM gauge transformation (3.3). i.e.,

δ(0)α ha
µν = ∇µ∇να

a +
2Λ

(D − 1)(D − 2)
gµνα

a

= ∇µ∇να
a + (H0)

2 gµνα
a

(4.11)

here, σ
L2 is defined as the curvature scalar background. We are required to form (4.10)

in such a way that the non-linear action S = S(0)+S(1)+S(2)+ · · · will respect the gauge
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invariance δαS = 0.

We have already found S′ in (4.7), and we can observe that it is quadratic in the field h.

Hence, we expect S∞ to be cubic in h (which encodes the cubic interactions), and so on.

We may proceed with a systematic analysis just like we did with the dRGT candidate in

section (3.2.5). However, we would like to present a different (and more convenient)

way to prove the consistency, known as the Closure Condition.

Proof of consistency: Closure condition

One method to confirm the consistency of this theory is the so-called ‘Closure Condition’:

A powerful tool to search for the nonlinear deformations of the PM gauge symmetry.

It is the requirement that the gauge symmetries must form an algebra up to on-shell

trivial symmetries. This provides a set of non-trivial relations that for any two gauge

parameters α and β, the equation

[
δα, δβ

]
ha
µν = δχh

a
µν + on shell trivial (4.12)

holds for some functional χ that depends on the gauge parameters α and β, where

‘on shell trivial’ refers to gauge transformations that vanish on shell, maintaining the

invariance of the action. This would be more convenient in practice than trying to find

the gauge invariance on the action at each order. The power of the closure condition lies

in its generality, as one does not need to make any assumptions regarding the action

of the nonlinear theory. The only assumptions used are that the full transformation

involves terms with up to two derivatives, and the gauge transformation must reduce

to the linear PM symmetry (3.3) at zeroth order in powers of the field. Here, we will

use the closure condition to extend the gauge algebra, gauge symmetry, and the action
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to non-trivial order in the fields. We note that χ, and consequently the gauge algebra,

can be constrained based on algebraic considerations only, even without preliminary

information about the possible deformations of the gauge symmetry itself.

Let us consider our deformations in orders of a parameter ϵ. At zeroth order of ϵ, we

would have

[δα1 , δα2 ]h
a
µν = 0 +O(α), (4.13)

meaning that the algebra of the free theory is abelian, which is the same result of the

unitary theory (4.7).

At first order of ϵ, the unique candidate extension to the closure condition would be

given by

[δα1 , δα2 ]h
a
µν = δ(0)χ ha

µν +O
(
ϵ2
)

(4.14)

with δ
(0)
χ specified by (4.11), and χ is given as

χ = ϵ
(
ma

bcα
b
1α

c
2 + na

bc∇µαb
1∇µα

c
2

)
+O

(
ϵ2
)
, (4.15)

where ma
bc = ma

[bc] and na
bc = na

[bc] correspond to the structure constants of the gauge

algebra. Further constraints will arise on the structure constants by demanding that

the algebra is represented in the fields through an infinitesimal gauge symmetry. We

discover that this condition is quite strong and will lead to

ma
bc = na

bc = 0, (4.16)

meaning that the gauge algebra cannot accommodate any non-Abelian extensions. This

circles back to the no-go result from the unitary theory (4.12) and implies the necessity
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to extend the gauge algebra δ
(1)
α +δ

(2)
α +· · · and the action to higher order terms S(2)+· · · .

We examine the first-order deformation δ
(1)
α by restricting ourselves to contractions

that are linear in field-strength tensor F a
µνρ and containing no more than two derivatives.

The most general form of the transformation δ
(1)
α is then

δ(1)α ha
µν =ϵ

(
ua
(1)bc∇ρF b

ρ(µν)α
c + ua

(2)bc∇(µF
b
ν)α

c

+ ua
(3)bcgµν∇ρF b

ρα
c + va(1)bcF

b
ρ(µν)∇ραc

+va(2)bcF
b
(µ∇ν)α

c + va(3)bcgµνF
b
ρ∇ραc

)
,

(4.17)

where the constants ua
(i)bc and va(i)bc are arbitrary for now. By forcing the closure condi-

tion with the existence of non-trivial cubic terms with no more than two derivatives, we

demand that the constants are then

va(1)bc ≡ fa
b,c, ua

(i)bc = va(i ̸=1)bc = 0. (4.18)

Hence, the gauge transformation in that order is

δ(1)α ha
µν = ϵfa

b,cF
b
ρ(µν)∇ραc, (4.19)

with forcing the structure constants fa
b,c to be symmetric under the exchange of the

first two indices. All these non-trivial conditions are only satisfied when the spacetime

dimension is D = 4. The cubic term of the action is then given by

S1 =

∫
d4x

√
−gha

µνJ
µν
a , (4.20)
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where

Jµν
a = fbc,a

[
F bµ

ρσF
cνρσ − F bµF cν − F bρ(µν)F c

ρ

− 1

4
gµνF bρσλF c

ρσλ +
1

2
gµνF bρF c

ρ

]
.

(4.21)

We can easily check that this cubic action satisfies the PM gauge invariance up to the

expansion δ(0). i.e., one can easily check that

(δ(0) + δ(1))S1 = 0. (4.22)

We observe that Jµν
a is manifestly invariant under the undeformed PM symmetry δ(0),

which defines a conserved current in the following sense

∇µ∇νJ
µν
a + (H0)

2gµνJ
µν
a ≈ 0 (4.23)

where the notion ≈ is an equality modulo the equations of motion of the free theory.

4.2.2 Consistency of the Gauge Symmetry

We have identified the most general first-order transformation of the PM spin-2 gauge

symmetry and classical action in that order. Now, we will examine higher orders. To do

so, We must recall that the statement that a gauge symmetry must be consistent with an

algebra leads to further constraints at higher orders. For example, we have discussed

in Yang-Mills theory (4.1) that the consistency of the gauge symmetry in higher orders

implies that the structure constants fa
bc must satisfy the Jacobi identity. This means

that there must be a similar constraint to the structure constants in the first-order PM

gauge transformation (4.19) and the action (4.20) where the symmetry is preserved.
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This ‘consistency requirement’ is found to be:

fae,bf
e
c,d ≡ keffea,bffc,d = 0. (4.24)

We can readily see two simple, yet important outcomes:

• In the case of a single field (N = 1), we immediately find that the only solution is

f11,1 = 0, meaning that for a single PM spin-2 field, it is impossible to extend the PM

gauge symmetry beyond the lowest order δ(0). This is the no-go result we encountered

in section (3.2.5).

• For multiple PM spin-2 fields, setting kab = δab = diag(+1,+1, · · · ,+1) will lead to the

result that all structure constants must be zero. i.e., fab,e = 0, ∀ a, b, e ∈ {1, 2 · · · , N}.

Which takes us back to the no-go result of the unitary theory (4.7). The consistency

requirement of the gauge symmetry can only be achieved if at least one or more of the

fields enter the action with a negative sign on its kinetic term, forcing non-unitarity to

avoid the no-go results.

Hence, the requirement (4.24) shows great rigor by the ability to re-establish the previ-

ous no-go results and provides a rigorous resolution to no-go results of PM gravity.

Applying the consistency requirement

We now have the ability to use the consistency requirement (4.24) to maintain the

gauge invariance of the action at higher orders. We will demonstrate this by taking the

statement of the gauge invariance

δαS = (δ(0)α + δ(1)α )(S0 + S1) = 0. (4.25)
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This statement would be second order in ϵ. Meaning it extends the deformation to quad-

ratic order. By plugging in (4.12) and (4.20), along with the transformations (4.11) and

(4.19), we find that

(δ(0)α + δ(1)α )(S0 + S1) = 2ϵ2fab,ef
e
c,d

∫
d4x

√
−g
[
F aµ

ρσF
bνρσF c

λµν∇λαd + · · ·
]

(4.26)

will satisfy the gauge invariance by just imposing the constraint

fab,ef
e
c,d ≡ keffab,effc,d = 0, (4.27)

and solving for the structure constants fab,c. Hence, the unique non-linear extension to

the PM gauge symmetry up to and PM action up to the first order in α remains consist-

ent as a non-linear extension to PM gravity with multiple fields up to the second order

in α, provided that no further deformations are introduced and that the constants fab,c

satisfy the consistency requirements (4.24) and (4.27).

To simplify the approach to solve for the structure constants, one would first de-

termine the number of fields N , the matrix kab, and then determine the structure con-

stants fab,c which forces the consistency of the gauge transformations. One simple case

would be N = 2. This number of fields forces the choice of kab = diag(+1,−1) in order

to achieve non-unitarity. In this case, the structure constants will become totally sym-

metric, and the solution is unique, which is simply fab,c = 1,∀a, b, c ∈ {1, 2}.

To conclude this section, we proceed to highlight the critical findings within the

work of the Non-unitary multi-field PM gravity, presented by the following key insights:
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With enforcing non-unitarity, a theory of multiple PM spin-2 fields can possess cubic-

order interaction terms with two derivatives allowed only in four dimensions, which de-

mands introducing a field-dependent deformation of the PM gauge symmetry, yet remain-

ing consistent in the full non-linear level.

The gauge algebra is always Abelian to all orders in perturbations, and any attempt to

deform the gauge algebra in a non-Abelian manner is unfeasible. Consequently, a unitary

theory of multiple PM spin-2 fields leads to no-go results.

Any non-trivial consistent theory of multi-field PM gravity must be non-unitary.

4.2.3 Candidate Theory in mini-superspace

Given its recent establishment, examinations into the consistent non-unitary multi-field

theory of PM gravity [41] are still lacking. Hence, we attempt to explore this candidate

theory in mini-superspace, i.e., in the FRW ansatz, by presenting novel calculations on

the actions (4.8) and (4.20) with the gauge transformations (4.11) and (4.19).

Setup

We proceed by examining a particular case of N = 2 PM spin-2 fields in four dimensions

D = 4. For this system, the internal metric kab and the structure constants fab,c are given

by

kab = diag(1, -1), fab,c = 1 ∀a, b, c ∈ {1, 2} (4.28)
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Having two fields, we may introduce the FRW metrics fa
µν as follows

f 1
µν =

−N2(t) 0

0 a2(t)δij

 f 2
µν =

−M2(t) 0

0 b2(t)δij

 (4.29)

Now we can apply the FRW setting by expressing the PM spin-2 fields ha
µν as a perturb-

ation about the de Sitter metric gµν such that

ha
µν = fa

µν − gµν (4.30)

Subsequently, by substituting (4.30) in the expression of the tensor F a
µνρ defined in

(4.9), We find that the non-zero components of F a
µνρ are

F 1
tij =

(
2aȧ−H0a

2 −H0e
2H0tN2

)
δij = −F 1

itj

F 2
tij =

(
2bḃ−H0b

2 −H0e
2H0tb2

)
δij = −F 2

itj

(4.31)

For simplicity, we will denote these tensors in the following discussion with F1 for F 1
tij,

and F2 for F 2
tij.

Results

Utilizing the presented setup, we directly substitute (4.30) in the expression of the

action (4.8), which then gives the form of the undeformed action S0 in the FRW ansatz

in our special case

S0 =

∫
d4x

(
−3e−H0t

) (
(F1)

2 − (F2)
2 ). (4.32)

We proceed to find the undeformed gauge transformation laws for the scale factors and

the lapse functions on which the action must be invariant. Using the expression (4.30),
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the undeformed gauge transformations (4.11) are given by

δ(0)α = δ(0)α (fa
µν − gµν) =

(
∇µ∇ν + (H0)

2 gµν
)
αa (4.33)

Solving for the time component yields

δ(0)α fa
tt =

(
∇t∇t + (H0)

2 gtt
)
αa

= α̈a − (H0)
2 αa

(4.34)

Note that αa is the scalar gauge parameter for each field. To avoid confusion, we will

use the notion αa=1 = α1 and αa=2 = α2. The undeformed gauge transformation laws

for the lapse functions N(t) and M(t) are then

δ(0)α N(t) = − 1

2N

(
α̈1 − (H0)

2 α1

)
(4.35)

δ(0)α M(t) = − 1

2M

(
α̈2 − (H0)

2 α2

)
(4.36)

Now for the spacial components,

δ(0)α fa
ii =

(
∇i∇i + (H0)

2 gii

)
αa

=

(
∂i∂iα

a − Γρ
ii∂ρα

a + (H0)
2 giiα

a

)
=

(
−H0e

2H0tα̇a + (H0)
2e2H0tαa

) (4.37)

which then gives the undeformed gauge transformation laws for the scale factors a(t)

and b(t) as

δ(0)α a(t) =
1

2a

(
−H0e

2H0tα̇1 + (H0)
2e2H0tα1

)
(4.38)
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δ(0)α b(t) =
1

2b

(
−H0e

2H0tα̇2 + (H0)
2e2H0tα2

)
(4.39)

Applying these gauge transformations on the action S0 gives

δ(0)α S0 =

∫
d4x

(
−3e−H0t

) {
2 (F1) δ

(0)
α (F1)− 2 (F2) δ

(0)
α (F2)

}
. (4.40)

One then finds that

δ(0)α (F1) = 2aδ(0)α ȧ+ 2ȧδ(0)α a− 2H0δ
(0)
α a− 2H0e

2H0tδ(0)α N = 0

δ(0)α (F2) = 2aδ(0)α ḃ+ 2ḃδ(0)α b− 2H0δ
(0)
α b− 2H0e

2H0tδ(0)α M = 0,

(4.41)

hence proving the consistency of the gauge symmetry for the undeformed action in our

FRW setting.

Moving forward, we express the action in the 1st order of deformations by again

substituting (4.30) into the action S1 presented in (4.20). The resulting expression is

S1 =

∫
d4x

(
−3e−H0t

) (
F1 + F2

)2{
e−2H0t(a2 + b2)− (N2 +M2)

}
, (4.42)

and the gauge transformation law in the 1st order of deformations is then

δ(1)α (fa
µν − gµν) = ϵ

(
kadfdb,cF

b
ρ(µν)g

ρσ∇σα
c
)

(4.43)

δ(1)α (fa
µν) = ϵkad

(
fd1,1F

1
ρ(µν)g

ρσ∇σα
1 + fd1,2F

1
ρ(µν)g

ρσ∇σα
2

+ fd2,1F
2
ρ(µν)g

ρσ∇σα
1 + fd2,2F

2
ρ(µν)g

ρσ∇σα
2

) (4.44)

which results in the gauge transformations for the lapse functions and the scale factors
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in the form

δ(1)α N(t) = δ(1)α M(t) = 0 (4.45)

δ(1)α a(t) =
ϵ

2a
(F1 + F2) (α̇1 + α̇2) (4.46)

δ(1)α b(t) = − ϵ

2b
(F1 + F2) (α̇1 + α̇2) = −a

b
δ(1)α a(t) (4.47)

Now if we apply these gauge transformations into the action (4.42), we find the follow-

ing

δ(1)α S1 =ϵ

∫
d4x

(
−3e−H0t

)
2
(
F1 + F2

)(
δ(1)α F1 + δ(1)α F2

){
e−2H0t(a2 + b2)− (N2 +M2)

}

+

∫
d4x

(
−3e−H0t

) (
F1 + F2

)2{
e−2H0t(2aδ(1)α a+ 2bδ(1)α b)− (δ(1)α N2 + δ(1)α M2)

}

= 0,

(4.48)

which again proves consistency.

We can also proceed to check the consistency of the extended action (S0 + S1) by

proving that

(δ(0)α + δ(1)α )(S0 + S1) (4.49)

satisfies the gauge invariance. We already found that δ(0)α S0 = δ
(1)
α S1 = 0. But for the

cross terms, The result

δ(0)α S1 + δ(1)α S0 = 3ϵ

{∫
d4x

(
−He−H0t

)
(F1 + F2)

2 (α̇1 + α̇2)

(
+2e−H0t

)
(F1 + F2)

(
Ḟ1 + Ḟ2

)
(α̇1 + α̇2)

(
+e−H0t

)
(F1 + F2)

2 (α̈1 + α̈2)

}
(4.50)
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is a total derivative term that vanishes when taking the equations of motion, proving

the gauge invariance. These results show that the non-unitary multi-field theory of PM

gravity in our two-fields FRW setup is consistent from the point of view of the gauge

structure, as the free action S0, the 1st order deformed action S0, and the extended

action (S0 + S1) are invariant under the gauge symmetries δ
(0)
α , δ(1)α , and (δ

(0)
α + δ

(1)
α ),

respectively.
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Chapter 5

Conclusion

This dissertation reviews and examines Partially Massless (PM) Gravity as a candidate

theory of gravity, focusing on its most recent and promising development, Non-unitary

Multi-field PM gravity. We start our discussion by introducing the fundamental prin-

ciples from the theory of massive gravity as elaborated in chapter 2. In section 2.1,

we deliver the formalism and the primary properties of linear massive gravity — linear

Fierz-Pauli theory — along with the challenges posed by the vDVZ discontinuity. This

discontinuity is manifest when investigating the exchange amplitude between the two

sources in the massive case approaching zero m → 0 and massless case m = 0. vDVZ

discontinuity is solved through the Vainshtein mechanism, which forces the extension

of massive gravity to the non-linear regime. However, this is a non-trivial task; as we

detail, some non-linear extensions of massive gravity face a significant challenge due

to a problem known as the BD ghost: terms with higher-order partial derivatives act-

ing on the longitudinal (helicity-0) mode of the field, which pose pathologies as they

give rise to energies with no lower bound. Fortunately, ghost-free non-linear theories

of massive gravity exist. We introduce in section 2.2 one favored ghost-free theory —
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the dRGT theory — detailing its formulation from the decoupling limit and highlighting

the absence of BD ghost. We comment that despite its promising structure that avoids

the BD ghost, the dRGT theory suffers from a critical limitation: the absence of FRW

cosmological solutions. Subsequently, in section 2.3, we revisit linear massive gravity,

but instead of flat spacetime, we consider the de Sitter (dS) spacetime. In that notion,

we discuss the idea of the Higuchi bound, which shows forbidden ranges on the mass

of the graviton m expressed in terms of the spacetime dimensions D and the Hubble

parameter H0. We highlight that when the mass of the graviton lies on the bound

m2 = (D − 2)H2
0 , massive gravity on dS becomes PM gravity. This was the first exist-

ence of the theory of PM gravity. Moving to Chapter 3, we analyze linear PM gravity in

section 3.1 and highlight its main properties, such as the relation between the mass and

the Hubble parameter/cosmological constant, propagation in four degrees of freedom

in four-dimensional spacetime, and the existence of a gauge symmetry. Next, in section

3.2, we emphasize the motivation for progressing towards a non-linear completion for

such a theory by discussing the potential resolution for the old cosmological constant

problem by the gauge symmetry and avoiding the pathologies inherent in massive grav-

ity. Nevertheless, the journey to find a consistent non-linear PM gravity is a challenge,

as higher orders of the theory lead to inconsistencies with its gauge symmetry, known

as the no-go result. This was demonstrated by the construction and obstruction for a

candidate derived from the ghost-free dRGT theory of massive gravity. Progressing to

chapter 4, we turn our attention to the Non-unitary Multi-field PM gravity, a promising

candidate for a non-linear theory of PM gravity. In section 4.1, we first discuss some ar-

guments for avoiding the no-go result by including multiple PM fields and relaxing the

unitarity condition in the theory. We elaborate on how non-unitarity does not necessar-
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ily result in pathologies, and relaxing the condition of classical unitarity is a valid option

for constructing our theories. In section 4.2, we systematically present the architecture

of the newly proposed theory, beginning with its unitary counterpart, then enforcing

non-unitary on the theory, and presenting the formalism of the action with the gauge

symmetry and its 1st order deformations. This candidate theory is a non-unitary Yang-

Mills-like theory for PM gravity, and its consistency is obtained not only by multiple

fields and non-unitarity but also with a constraint on the structure constants. We show

examples of special cases for the theory and its solution for the structure constants

chosen to maintain the gauge symmetry. Most importantly, we highlight the ground-

breaking result: any non-trivial consistent multiple-fields theory of PM gravity must be

non-unitary. Finally, in section 4.2.3, we perform a simple test for the theory up to the

1st order in deformations by deriving the candidate Theory in mini-superspace, i.e., in

a homogeneous and isotropic universe, known as the FRW ansatz. Our test considers

two fields N = 2 and four spacetime dimensions D = 4, provided the internal metric kab

and the structure constants fab,c as given in literature [41]. Our test has shown that this

theory is indeed consistent as the gauge symmetry is maintained in our setup. We may

say that the non-unitary construction of PM gravity is indeed an outstanding establish-

ment, which overcomes the problematic no-go results and provides the first example of

an interacting theory consisting of only PM fields.

The examination of the recent development of PM Gravity presented in this dis-

sertation provides fertile ground for further exploration and refinement. We believe

our consistency result presented in section 4.2.3 is worth validating for an arbitrary

number of fields. In addition, we encourage testing the theory under perturbations of

FRW, along with searching for cosmological solutions to the theory, which will then
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be a critical test for the reliability and applicability of the non-unitary multi-field PM

gravity. Moreover, there are many aspects and directions beyond this dissertation that

non-unitary multi-field PM gravity could cover, such as its link to conformal gravity and

the structure of higher-spin gauge theories for which the irreducible representations of

the ((A)dS) group play a crucial role. We warmly encourage readers seeking additional

insights to delve into the listed bibliography for further reading.

In conclusion, the theoretical framework of the non-unitary multi-field PM grav-

ity unfolds vast opportunities for promising future research endeavors. given that the

primary theoretical obstacle of deriving a consistent non-linear completion of PM grav-

ity has now been overcome, broader horizons of the theory of PM gravity would open,

bringing forth new challenges. Therefore, further examinations are needed to ascertain

validity at this level. The field is relatively young, and many developments are still

in progress. Nonetheless, we are eager to see more revolutionary findings in the near

future.
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